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SUMMARY

An updated free surface Lagrangian±Eulerian ®nite element kinematic description is used to simulate free
surface ¯ow problems associated with mould ®lling. The method proposed results in an accurate determination
of the front, making it ideal for problems in which free surface boundary conditions play an important role.
Signi®cant saving in CPU time can be obtained over other ®xed mesh approaches by virtue of the air domain
being ignored. Assuming a laminar regime for the ¯ow ®eld, a mixed interpolation formulation is used to
approximate the discretized governing equations for elimination.

Of particular interest is the method implementation to restrict the number of remeshing operations and track
the moving free surface within an arbitrary domain, either with or without internal obstacles. The method used to
automatically assign boundary conditions to the changing domain is described. A dam break problem is modelled
numerically and compared against experimentally derived data in order to validate the model. A further
numerical example demonstrates the capabilities of the algorithm developed to model the ®lling of an industrial
casting. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical modelling of free surface ¯ow has many important industrial applications. These include

applications in environmental engineering, mould ®lling in metal casting, injection moulding through

to forging, rolling, extrusion and many other processes. The prediction of ¯ow patterns for problems

in which the free surface boundary condition are important requires an accurate de®nition of that

surface for solutions to be acceptable. There currently exist a number of methods to model free

surface ¯ow problems. These can be conveniently divided into two categories, the ®xed and moving

mesh types.

The natural choice for moving boundary problems would be of the Lagrangian and arbitrary

Lagrangian±Eulerian types.1±3 Both methods allow for an explicit determination of the free surface,

with the front ideally located on that boundary.

In the updated Lagrangian approach the mesh for a given time step is incremented at the free

surface in terms of the instantaneous surface velocity ®eld. The main drawback of this method is that

the mesh deforms severely as the free surface moves, making remeshing a must at almost all time
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steps. A robust remeshing algorithm is therefore essential for the success of this method. Special

treatments are also required to transfer the geometry de®nition of the ¯uid domain into the ®nite

element mesh for the next time step. An attractive aspect of this approach, however, is that it offers

certain advantages when dealing with advection-dominated transport equations. A similar front-

tracking model has been developed by Muttin et al.4

The arbitrary Lagrangian±Eulerian formulation is a variant of the Lagrangian formulation, with the

mesh deforming in terms of an arbitrary velocity, independent of the ¯ow velocities, expect at the

free surface. The speed of the moving mesh is incorporated into the convective term, making it more

stable numerically and signi®cantly reducing mesh distortions. The selection of the mesh velocity is,

however, not trivial and requires an experienced user for proper implementation. Other authors have

tracked the free surface along preselected splines. However, owing to the complex nature of the

®lling patterns in mould ®lling, the above method would be dif®cult to implement, since the

generation of appropriate splines requires some knowledge of the ®lling pattern.5,6 The moving mesh

approached has additional requirements regarding the treatment of contact with the enclosing wall

and it also introduces truncation errors during the interpolation of variables from the distorted mesh

to the new mesh.

In the second category a ®xed mesh is generated to cover the spatial domain and the free surface is

augmented by making use of a nodal variable or function, which is advected using velocities obtained

from the Navier±Stokes equations. The nodal variable or ®ll factor (pseudoconcentration factor)

determines the position of the free surface by giving an indication of the percentage of the mould

®lled. Two ¯uids are modelled, namely ¯owing ¯uid of interest and a ®ctitious material in the empty

region. This method requires no geometry manipulations for the free surface after the ®nite element

mesh is generated and it can easily be applied to the treatment of complex geometries. However, it

results in a smeared free surface and, owing to the incompressibility condition imposed, entrapped air

cannot escape. Temporary holes and a Darcy-type law have been used to allow air to ®lter through the

porous walls. In both cases an experienced user is needed for the resulting ®lling pattern to be

realistic. Another type in this category is named fringe element generation. In this method, fringe

elements are generated temporarily at the free surface so boundary conditions are more accurately

satis®ed. Some authors have used markers distributed in the ¯uid domain as material points

(MAC).7,8 A net in¯ow method has been applied to simulate time-dependent free surface ¯ows.9 In

this method both ®lled and un®lled domains are included in the analysis, with the volume of the

incompressible liquid in each control volume calculated at each iteration. Finite element formulations

have also been developed for simulating metal-casting ¯ows using the ®xed mesh approach.10±23

The method advocated for modelling free surface ¯ow in geometries where free surface boundary

conditions are important is the mixed Eulerian±updated Lagrangian free surface method. The model

is based on an Eulerian ®nite element formulation combined with a Lagrangian free surface

incrementation method. The principal advantage of this method lies in the natural representation of

the free surface. Owing to the explicit nature of the free surface incrementation process, an accurate

description of the front results. As the mesh deforms, various methods are used to prolong its useful

life. However, when the mesh becomes too distorted, remeshing has to be initiated. The ef®ciency of

the mesh generator is crucial in ensuring that the time saved in omitting computations in the air

domain is not used up in remeshing the domain. In two dimensions the CPU time required for mesh

generation is small compared with the solution time.

Other authors have applied ®nite difference schemes together with the Sola-VOF method.24,25

2. PHYSICAL MODEL

In the following sections the governing equations and boundary conditions are presented.
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2.1. Hydrodynamics

The general problem for an incompressible ¯uid is taken into account here. The governing

equations are the incompressibility condition

H � u � 0 �1�
de®ned on Gme and the transport of ¯uid momentum

r
@u

@t
� �u � H�u

� �
ÿ t� Hp � f �2�

de®ned on Gme. Here, u is the ¯uid velocity, r is the density, p is the scalar pressure, f is the body

force �rg� and t is the viscous stress tensor given by

t � 2mS; �3�
with

S � 1

2
�Hu� �Hu�T�; �4�

where m is the dynamic viscosity and S is the rate-of-strain tensor.

3. BOUNDARY CONDITIONS

As indicated in Figure 1, two main subsets of free surface boundary conditions were employed on Gf

(¯uid±air interface) and Gs (¯uid±solid boundary interface) respectively. These take the form of

speci®ed velocities u and pressure p on the boundaries,

u � f �x; y� defined on Gs; p � f �x; y� defined on Gf ; �5�
where Gs is the solid wall boundary and Gf is the free surface boundary.

Figure 1. Problem de®nition
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The free surface was treated as traction-free with pressure speci®ed as atmospheric. Slip or no-slip

boundary conditions could be implemented at the solid wall boundaries. For no-slip boundary

conditions all the nodes on the solid wall are ®xed, i.e. un � 0 and ut � 0, except for the nodes that

lie on the free surface, for which a slip boundary condition was applied, so only un � 0. In specifying

slip boundary conditions on the solid boundaries, the effects of the boundary layer on the ¯ow are

effectively assumed to be negligible during the small step used. This is the case for all the numerical

examples discussed in this paper.

Use has been made of a method implemented by Engelman et al.26 and Pinder and Gray27 to cope

with ¯ow in domains where some of the ¯ow boundaries do not correspond to the global Cartesian

axes. Equations at the relevant boundary nodes, which are not on the free surface or at the inlet, are

transformed in the local directions and tangential and=or normal boundary conditions are applied as

desired. By premultiplying the unknowns in the global direction by a rotation matrix, the unknowns

in the local direction can be obtained. The force vector can be determined in a similar manner. This

can be written as

UL � RUG; FL � RFG; �6�
where UL and UG are vectors holding unknowns in the local and global directions, FL and FG are the

force vectors in the local and global directions and R is the rotation matrix. In two dimensions this is

made up to 262 submatrices on its diagonal. For each relevant boundary node this matrix can be

written as

ny ÿnx

nx ny

� �
;

where nx and ny are direction cosines with respect to the global directions x and y. The rotation matrix

for nodes where no rotation of the axes is required is simply a 262 identity matrix.

For nodes where transformation to the local co-ordinate direction is desired, the complete

transformation matrix changes from KGUG � FG in the global direction to RKGRTUL � RFG in the

local direction. This is obtained bearing in mind the orthogonal nature of the rotational matrix R.

The direction cosines for the boundary segments are evaluated before the solution process using

the expressions

nxij
� yj ÿ yip��xi ÿ xj�2 � �yi ÿ yj�2�

; nyij
� xj ÿ xip��xi ÿ xj�2 � �yi ÿ yj�2�

;

where �xi; yi� and �xj; yj� are the co-ordinates of the end points of the boundary segment ij, Figure 2(i).

The normal for the boundary node at �xk; yk�, Figure 2(ii), is evaluated in a similar manner.

Nodes that lie on any boundary segment or boundary node are assigned the normals that

correspond to it. Other nodes, typically lying on the front, have their direction cosines evaluated

based on the `consistent' normals, i.e. mass conservation arguments, and can be written as

nxi
� 1

ni

�
O

@Nj

@x
dO; nyi

� 1

ni

�
O

@Nj

@y
dO;

with

ni �
�
O

@Nj

@x
dO

� �2

�
�
O

@Nj

@y
dO

� �2
" #s

; �7�

where only elements that contain the node i contribute to the integrals. N represents quadratic shape

functions for the elements in question over the domain O.
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The rotation matrices are then assembled from the evaluated normals, with the signs of the

direction cosines reversed to direct them into the element.

4. NUMERICAL MODEL

4.1. Finite element formulation

In order to obtain the discretized form of the equations, the governing equations are spatially

discretized28±30 using the conventional Galerkin weighted residual technique.31

A mixed interpolation formulation was adopted32 enabling us to approximate the discretized

differential equations so that the variables can be reduced by elimination.

Six-noded triangular elements which satisfy the Brezzi±Babuska condition, Figure 3, i.e. � u; v; p

and � u; v,29 were used. These have the advantage of optimal convergence rate and have been shown

to have a proven record of performance in problems of incompressible ¯ow.33 The above element

was also chosen owing to the ¯exibility it offers for Lagrangian moving mesh problems.

4.2. Spatial discretization

Shape functions are used for approximating the ®eld variables over the domain. In a typical

element e the velocities and pressure are given by

ue �
Pn
i�1

Niui; ve �
Pn
i�1

Nivi; pe �
Pn0
i�1

N 0i pi; �8�

where n is the number of velocity nodes in the element e and n0 is the number of pressure nodes.

Similarly, N represents quadratic shape functions for velocity interpolation and N 0 represents linear

shape functions for pressure interpolation.

An expression for the residual can be obtained using equations (1) and (2). Minimization is then

required using weighting functions. Applying Green's theorem to the momentum equation derived,

the weak form of the weighted residual equation is obtained.

Figure 2. Co-ordinate used for evaluation of normals

Figure 3. Element used
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In the continuity equation the pressure shape functions N 0i are used for the weighting functions, as

the continuity equation will only be enforced at the pressure nodes. The ®nal set of spatially

discretized equations may be written in the form

M _u�Ku � F; �9�
where M is analogous to the mass matrix, K is the convective and diffusive matrix, F is the force

vector and y is the ®eld vector.

In matrix form,

rMu 0 0

0 0 0

0 0 rMv

0@ 1A _u
_p
_v

0@ 1A� Kuu Cu Kuv
CT

u 0 CT
v

Kvu Cv Kvv

0@ 1A u

p

v

0@ 1A � Fu

0

Fv

0@ 1A; �10�

where

Mu �Mr �
�
O

NiNj;

Kuu � Kvv �
�
O
r NiNkuk

@Nj

@x
� NiNkvk

@Nj

@y

� �
� m

@Ni

@x

@Nj

@x
� @Ni

@y

@Nj

@y

� �
;

Kuv � Kvu � 0

are matrices of the order n� n (where n is the number of velocity interpolation nodes),

Cu � ÿ
�
O

@Ni

@x
N 0j ; Cv � ÿ

�
O

@Ni

@y
N 0j �11�

n� n0 matrices,

CT
u � ÿ

�
O

N 0i
@Nj

@x
; CT

v � ÿ
�
O

N 0i
@Nj

@y
�12�

are n0 � n matrices, the n-dimensional force vectors are

Fu � ÿ
�
G

Ni fx; Fv � ÿ
�
G

Ni fy �13�

and r is the density.

4.3. Temporal discretization

Finite difference approximations are used to spatially discretize the resulting ®rst-order ordinary

differential equation with respect to time.

From the generalized midpoint family of methods34,35 the differential equation M _u�Ku � F can

be written as

M�yn�a; tn�a� _un�a �K�un�a; tn�a�un�a � Fn�a; �14�
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where

un�1 � �1ÿ a�un � aun�1; _un�1 �
un�1 ÿ un

Dt

� �
; tn�1 � tn � aDt: �15�

Substituting (18) in (17), we obtain the expression

Mn�a
Dt
� aKn�a

� �
�un�a� �

Mn�a
Dt
ÿ �1ÿ a�Kn�a

� �
�un� � �Fn�a�: �16�

For different values of a, different members of this family of methods can be identi®ed. For the

examples presented later, the backward difference method is used. This results in the expression

�Mn�1 � DtKn�1��un�1� � �Mn�1��un� � �DtFn�1�: �17�

4.4. Iterative procedure

The set of non-linear equations speci®ed in (9) is solved using a simple relaxation procedure.31

1. Initial values are assumed for the primitive variables.

2. These are solved for the updated values un�1; vn�1 and pn�1.

3. �un�1 ÿ un�=un�1; �vn�1 ÿ ~vn�=vn�1 and �pn�1 ÿ ~pn�=pn�1 at all nodal points are evaluated. If

within a speci®ed tolerance, the solution has converged.

4. If the difference in any of the above expressions is greater than or equal to the tolerance, ~u is

updated to a simple arithmetic mean �un�1 � un�=2 with a weighting factor of 0�5. The whole

process is repeated until convergence is achieved.

4.5. Equation solution technique

The method adopted for solving the assembled matrix equation is based on the direct elimination

frontal solution method.31 This is based on direct Gaussian elimination for solving symmetric

matrices, with the leading diagonal always used as a pivot.

Upon remeshing the domain, a front width minimization module is used to renumber the elements,

thereby minimizing the maximum number of equations stored in the core at any one time step.

5. GEOMETRY DEFINITION

5.1. Overview

Prior to initiating the ®nite element analysis, the geometrical model has to be de®ned. This would

typically contain information on the metal±mould and metal±air interfaces. Boundary speci®cation is

currently being done during the preprocessing part of the mesh generation process. The de®ned

boundary consists of a collection of straight and=or curved wall segments forming one or multiple

enclosed loops. This is de®ned in a boundary control ®le.

5.2. Discretization

In order to accurately de®ne the geometry of a complex casting with curved boundaries, a large

number of interconnected straight boundary segments would be required, Figure 4. To improve the
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geometry de®nition process while minimizing the number of boundary nodes or segments required,

three boundary segment types were chosen.

The ®rst type consisted of simple straight line segments with speci®ed end points. This is suitable

for most simple castings with straight line boundaries. The second type was obtained by de®ning the

centre point �x0; y0� of a circular arc, its radius (r), start point �x1; y1� and end point �x2; y2�. The third

case is obtained by specifying key points and ®tting a cubic spline through them. This typically

results in signi®cant improvement in the geometrical model for highly curved boundaries. Figure 5

shows a schematic representation of the different types of segments used. Once the boundary

segments are de®ned, they are discretized by subdividing them to form a closed loop of

interconnecting line segments. The nomenclature adopted is anticlockwise, to enable us determine,

during the front update process, in which domain the node lies.

5.3. Assignment of boundary conditions to ®nite element mesh

The very nature of the updated front Lagrangian±Eulerian approach to the modelling of free

surface ¯ow requires that an automatic method of assigning boundary conditions to the deforming

mesh be devised. Boundary conditions assigned to the wall boundary segments are read as input.

Upon discretization of the boundary segments into a continuous loop of interconnected line segments,

the properties of each line segment, i.e. slope, intercept and type, have to be evaluated. Three types of

segments are identi®ed, namely vertical, horizontal and inclined, the vertical and horizontal cases

being considered as special cases of the inclined type. The nodes on the metal boundary or interface

are then obtained and a check is initiated to ®nd out on which boundary segment the node lies. To

achieve this, a loop over the wall segments is performed and the distance of the node to the wall

segment is evaluated to identify the contact nodes. The properties of the last segment and the next,

corresponding to the boundary node, are evaluated. If the relative difference is less than a set

tolerance, with the node deemed to be close enough to the wall, and the wall segment boundary

conditions are assigned to the boundary node, Figure 6(i). Here � is a wall boundary node and � is the

mesh boundary node under consideration.

Figure 4. Boundary segments

Figure 5. Boundary segment types
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Nodes that correspond to a global boundary node, Figure 6(ii), are identi®ed by checking the co-

ordinates of the boundary node to see whether it is less than a set tolerance from the global boundary

node in question. Should this be the case, boundary conditions are assigned to the node, consistent

with input values. Contact nodes, Figure 6(iii), are identi®ed when the slope of the preceding or next

segment of a boundary node does not correspond to the slope of the boundary segment on which the

node lies. Once these nodes are located, they are ¯agged for special treatment, such as the magnitude

of wall adhesion if modelled, and the corresponding boundary conditions are assigned.

Nodes not deemed to lie on any wall segment are collected and ¯agged as free surface nodes. The

different types of boundary nodes are shown in Figure 7.

6. TIME STEP ADJUSTMENT

6.1. Front-tracking considerations

Within each time step iteration the time taken for the node closest to the boundary to penetrate the

wall is computed. If this node is within a set tolerance from the wall, it is ®xed to it; otherwise, the

time step for the current iteration is modi®ed to prevent penetration. Reduction of the time step is also

based on the time taken for the contact node, Figure 7, to move to the end point of a wall segment.

This process has to be performed to ensure an element does not violate the boundary integrity. The

process is repeated until convergence is attained, with the node deemed not to have penetrated the

solid boundary.

Figure 6. Boundary node types

Figure 7. Boundary node types
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When analysing ¯ow in some complex geometries, the percentage of ¯uid lost can exceed the

tolerance set. In this case the time step size is automatically reduced to ensure that the volume of ¯uid

lost does not exceed the acceptable upper limit.

6.2. Time step considerations

In order to automate the time step selection process, the movement of the free surface at any time

step was restricted to the neighbouring elements, i.e. the Courant number was limited to 1�0,

C � uDt=h4 1�0; �18�

where u is the magnitude of the velocity and h is the distance between two corner nodes.

7. FRONT UPDATE

The free surface was traced implicitly by making use of the Lagrangian transport equation applied to

the nodes on the front. Velocities obtained at the front were used to increment the free surface via the

expression

xn�1 � xn � dxn on Gf ; �19�

with

dxn � vdt; �20�

where xn�1 is the nodal position at the �n� 1�th time step, dxn is the increment at the nth time step, dt

is the current time step, v is the nodal velocity and Gf is the free surface along which the pressure was

speci®ed as atmospheric, Figure 8(i). The front was found to be suf®ciently accurate when only the

free surface corner nodes were incremented, with the midside nodal co-ordinates interpolated.

Upon updating the front nodes, the front elements are checked for boundary violation. For ¯ow

around sharp corners an element face can violate the boundary, Figures 8(ii) and 8(iii). Should this

happen, the node closest to the boundary node is adjusted to coincide with the boundary nodal

position. Another common case of boundary violation is shown in Figure 9. All the boundary nodes �
lie on the wall, but when the ®nite element mesh is generated, some newly created midside nodes do

not lie within the domain. In such cases the co-ordinate of the node violating the boundary integrity is

adjusted so as to coincide with the wall or the element is deleted from the ®nite element mesh if

deemed to lie outside the mould cavity. A further check is performed to adjust the co-ordinates of

nodes that lie within the boundary layer to lie on the wall.

Figure 8. Free surface update
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8. FRONT TRACKING

Upon updating the free surface, the metal boundary data has to be checked and converted to the

geometry instructions for the mesh generation module. The following subsections gives an insight

into how this is achieved and outlines the checks necessary to ensure an accurate prediction of the

free surface movements.

8.1. Extraction of boundary nodes

Once the free surface is incremented, the boundary nodes have to be extracted. Boundary nodes are

identi®ed by ¯agging all coincident element faces. Non-coincident faces are boundary faces (Figure

10). These are stored in an anticlockwise order, beginning at the inlet. Owing to memory

considerations, only nodes that are critical to the boundary de®nition, i.e. do not lie on a straight line,

are stored.

8.2. Treatment of air bubbles

Entrapped air pockets from the previous time step are obtained from the updated mesh. These

typically would be an internal enclosed loop of boundary segments. The formation of new air pockets

or holes in the incremental mesh is determined by checking the front nodes for overlapping segments,

Figure 11(i), or intersecting segments, Figure 11(ii).

This commonly occurs under certain ¯ow conditions, when a wave may develop, resulting in the

free surface folding over itself. Should this happen, the volume of the air pocket that results is

evaluated. If deemed signi®cant, its effect is included in the mesh geometry ®le and a hole is

generated in the mesh; otherwise, it is ignored. Splashing in the ¯uid domain, which typically occurs

Figure 9. Boundary integrity violation

Figure 10. Boundary nodes
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during `break-up' of the ¯uid particles away from the main mass of ¯uid into droplets, is not

modelled, Figure 12(i). When this occurs, the co-ordinates of the interesting segments are not

modi®ed, to prevent break-up, Figure 12(ii).

8.3. Flow around obstacles

While tracking the free surface within a domain with internal obstacles, they are input as segments

or subdomains de®ned by interconnected nodes or lines. As the free surface is updated, all

internal subdomains are continuously checked to see whether they are completely enclosed by the

moving ¯uid. Should this be the case, the internal subdomain or segment is identi®ed as a boundary,

Figure 13(i), or a hole, Figure 13(ii), and the appropriate boundary conditions applied to the contact

nodes.

8.4. Collision of two moving fronts

Once convergence has been attained, the front nodes are checked for `mixing'. Should this happen,

the time step is automatically modi®ed to prevent signi®cant loss of ¯uid. A condition under which

this occurs is when the ¯uid ¯ows in an undular wave-like pro®le, folding over itself.

8.5. Spline ®tting

When the free surface has experienced signi®cant distortions, a cubic spline of the form

y�x� � ai�xÿ xi�3 � bi�xÿ xi�2 � ci�xÿ xi� � di �22�

Figure 11. Formation of bubbles

Figure 12. Break-up of free surface

942 R. W. LEWIS, S. E. NAVTI AND C. TAYLOR

INT. J. NUMER. METH. FLUIDS, VOL. 25: 931±952 (1997) # 1997 John Wiley & Sons, Ltd.



is ®tted at intervals along the front where smoothing is required. A composite function is de®ned

through the key points �x0; y0�; �x1; y1�; . . . ; �xn; yn�, with x0 < x1 < � � � < xn. Key points are chosen

at speci®ed intervals or in regions of high curvature and the intermediate nodes are computed. In

regions of high curvature more nodes are generated to give an accurate de®nition of the front. y�x� is a

cubic polynomial over each subinterval xiÿ1 4 x4 xi, with i � 1; 2; . . . ; n. The ®rst and second

derivatives are continuous at the data points, resulting in a smooth piecewise curve. Figure 14 shows

the result of smoothing a distorted free surface.

8.6. Contact angle check

A minimum contact angle has to be speci®ed for the contact node. As the ¯uid ¯ows, it sometimes

tends to spread along the retaining wall. As this happens, the contact angle might tend to 0�, making it

dif®cult to regenerate the mesh. Currently the minimum contact angle allowed is 5�, Figure 15. The

Figure 13. Flow around a circular obstacle

Figure 14. Modi®ed free surface using cubic spline

Figure 15. Contact point normal
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choice is based on geometrical considerations, although when modelling wall adhesion, it is an input

boundary condition which depends on the ¯uid and wall conditions.

9. MESH GENERATION

An unstructured mesh is generated using a Delaunay triangulation algorithm. A domain composing

the speci®ed geometry is spatially discretized using an octree subdivision.36

The triangulation process is performed over the whole geometry, making it necessary to delete

triangles that are located outside the subdomain in question. The directionality of the boundary edges

and of each triangle is related to the corresponding area. If the area is negative, the triangle is

considered to lie outside the subdomain and is deleted.

Two methods are used to deal with missing boundaries. Either temporary points could be inserted

for every missing edge, to aid in the element rejection procedure, or the boundaries could be directly

checked and recovered. This would normally result in the rejection of some elements and the addition

of new ones.

9.1. Mesh quality improvement

In order to have an accurate prediction of the front movements, the ®nite element mesh was re®ned

along the free surface. Three mesh density control parameters are currently used, one for the free

surface, another for the solid wall boundary and the third for the interior ¯uid domain. The speci®ed

mesh density is then interpolated to allow for cell division using the expression

dp �
Pn
i�1

di

rai

Pn
i�1

1

rai

�
�22�

for 1�04a4 2�0, where n is the number of control points and ri is the distance between the current

point and the ith control point. Currently only the control points in the neighbourhood of the point in

question are selected to ensure that the local features are re¯ected.

By discretization of the boundary information into a number of interconnected boundary nodes,

some control over the front node spacing can be obtained, especially when the density speci®ed is

greater than the node spacing.

A Laplacian smoothing technique is used to smooth out the mesh, thereby prolonging its useful

life. In this method the position Xi of an interior node i is repositioned based on the expression

Xi �
1

n

Pni

j�1

Xj �23�

for i � 1; . . . ;m, where ni is the number of nodes connected to node i;Xj is the position of the

connected nodes and m is the total number of interior nodal points. The result of the above expression

is to place the ith node at the centroid of the connected nodes. It has been found for current

applications that three smoothing iterations suf®ce to give a better quality mesh.

Subsequent to the smoothing operation the new co-ordinate of the adjusted node is checked to

ensure it does not move outside the boundary or result in an element having a negative area. In the

event of any of the above happening, the expression

X k�1
i � X k

i �
j
ni

Pni

j�1

�X k
j ÿ X k

i � �24�
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Figure 16. Case of failure of Laplacian smoothing technique

Figure 17. Flow chart
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is used, where i � 1; . . . ;m, the subscript k denotes the iteration number and j is a relaxation

parameter. The above expression, while being a variation of the ®rst smoothing equation, does not

guarantee that an interior node will not move outside the geometry (Figure 16). All the checks stated

above have to be performed again to establish that the adjustments do not result in a bad mesh.

10. TRANSPORT OF STATE VARIABLES

Upon regeneration of the mesh, state variables are interpolated from the old mesh to the new one. The

location of newly generated points on the updated mesh from the previous time step is found. Using

area co-ordinates of the old element in which they lie, the values of the primitive variables at the

corner nodes are interpolated onto the new nodes. A ¯ow chart for the complete ®lling algorithm is

shown in Figure 17.

11. MODELLING OF TILT POURING

The modelling of tilt pouring, a process commonly utilized in foundaries to reduce the effect of

turbulence, has been implemented using a correlation between the percentage metal in the mould and

the tilting angle.

The input parameters required are the minimum and maximum tilt angles and the percentages of

¯uid in the mould below which a minimum tilting angle is required and above which the maximum

tilting angle is used. The gravitational body force f in equation (2) is then evaluated using the

expressions

fx � ÿ�gx sin y� gy cos y�; �25�

fy � �gx cos y� gy sin y�; �26�
where gx and gy are the input body forces and y is the tilting angle measured positive anticlockwise.

The value of y is automatically derived from the expression

y � ymin � �ymax ÿ ymin� �
%full ÿ%min

%max ÿ%min

; �27�

where ymin and ymax are the minimum and maximum tilting angles and %full, %min and %max are the

percentage of ¯uid in the mould, the percentage of ¯uid below which a minimum tilting angle is

desired and the percentage of ¯uid above which the maximum tilting angle is used.

12. NUMERICAL EXAMPLES

12.1. Dam break analysis

A broken dam problem (Figure 18) for which experimental data were available was used to

validate the model. The data available were presented in the form of a non-dimensionalized plot of

the distance of the leading edge from the bottom left-hand corner versus time.24,37 In order to

simulate the dam-breaking process, a rectangular column of water 0�05715 m wide and 0�05715 m

high in hydrostatic equilibrium was allowed to collapse under gravity in a 0�17145 m wide and 0�07 m

high rectangular cavity as the right-hand side wall is removed. Free slip boundary conditions were

implemented at the solid wall boundaries, with the gravitational acceleration of 9�81 m s72 acting

vertically downwards. The density of water is 1000�0 kg m73 and the viscosity 0�5 kg m71 s. The
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time step used for the analysis was of the order of 0�005 s. The tolerance for the iteration was 1�0%,

with nodes within 0�0001 m from the wall assumed to lie on it.

Figure 19 shows a comparison of the numerical results obtained against experimentally derived

values. For convenience the dimensionless time and front positions are de®ned as t
p�g=H� and x=H

respectively. The results obtained are generally within 5% of the published experimental data.

Figure 20 shows the free surface position and mesh at different time steps. It can be seen that the

free surface has a well-behaved undular shape.

The analysis took 28 time steps to run, with an average iteration time of approximately 3 min, on a

SUN Sparc 10 workstation. The local percentage of volume of ¯uid lost was 3�0%. In this analysis the

mesh was regenerated at every time step, with a lot of I=O instructions. Restricting the number of

remeshing operations and I=O operations results in signi®cant speed-up of the analysis time.

12.2. Filling a bicycle hub

The ®lling of an industrial casting was modelled numerically using the algorithm described above

to illustrate the effectiveness of the method implemented in tracking free surfaces. Two sets of results

are presented, one without tilting and the other with tilting.

The metal was cast in a sand mould and ®lled from the top. Figure 21 shows the geometry of the

mould cavity, the initial metal front and mesh. The density of aluminium is 2385�0 kg m73, with a

gravitational acceleration of 9�8 m s72. The dynamic viscosity used was 1�14695 kg m71 s. The

tolerance for iterations was set at 1�0%, with nodes within a tolerance of 0�0001 m from the wall

assumed to lie on it. A time step of between 0�005 and 0�001 s was used.

Figure 18. Schematic diagram of broken dam problem

Figure 19. Front position versus time
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In these examples the mesh was once more generated at every time step. The mesh density varied

linearly within a set distance from the free surface. Outside this region a surface mesh density was

imposed within the domain and a wall density along the wall.

As the analysis progressed, these initial values were automatically adjusted to satisfy the stability

requirements. The time step could also be automatically adjusted, within limits, should the front

Figure 20. Mesh and free surface plots for broken dam problem

Figure 21. Schematic diagram of bicycle hub
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movement be considered too large or to minimize ¯uid loss. The grid Reynolds number was also

continuously monitored. In the event of it exceeding its threshold, 25 for this example, the mesh is

automatically re®ned. Other situations in which re®nement is performed are when a zero pivot is

encountered or when the free surface is complicated. In the case of a zero pivot being encountered,

the location is identi®ed and the mesh is locally re®ned.

Figure 22 shows the meshes and free surface positions obtained for the analysis without tilting. For

the analysis with tilting the tilt angle was maintained at 10� when the mould was less than 10% full

and increased uniformly thereafter to a maximum of 90� (i.e. vertical) when more than 90% full. The

results obtained are shown in Figure 23.

The results presented illustrate the ability of the method adopted to capture complex free surface

patterns. The ®ner the mesh, the more accurate are the results obtained. However, owing to run time

considerations, care has to be taken in selecting an optimal mesh density control parameter.

Figure 22. Front position and mesh plots for analysis with no tilting
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13. CONCLUSIONS

The effectiveness of an updated free surface Lagrangian±Eulerian ®nite element kinematic

description in simulating free surface ¯ow problems, particularly mould ®lling, has been

demonstrated. A mixed interpolation formulation has been successfully used to approximate the

discretized governing equations for elimination on a Lagrangian-type moving mesh. Although

requiring additional memory requirements and computations when dealing with front tracking as

compared with other ®xed mesh approaches, signi®cant savings in CPU time are realized by virtue of

the air domain not being considered in the ®nite element analysis. Unlike with the VOF method, an

explicit determination of the free surface results, making it ideal for the application of free surface

boundary conditions. Dif®culties associated with tracking the free surface will be signi®cantly

reduced if the above method is applied to the modelling of engineering processes where the free

Figure 23. Front position and mesh plots for analysis with tilting
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surface experiences less distortion. Results obtained are in good agreement with experimentally

derived data.
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